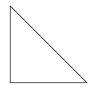
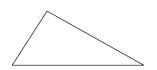
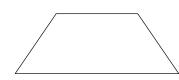

Geome	try Regents Lomac 2015-2016	Date <u>11/20</u> c	lue <u>11/23</u>	Using Congruent Triangles to prove 4.7R Quadrilateral Properties			
Name	Per						
L0:	I can prove statements by first proving that triangles are congruent and then using the corresponding parts to prove other relationships, including relationships in quadrilaterals.						
	NOW On the back of this pack	et					
(1)	Triangles and Quadrilaterals						
transparen cies and	Use a compass and straightedge OR tracing paper/plastic to make quadrilaterals						
<u>dry erase</u> <u>markers</u>	A parallelogram is a 4 sided shape with opposite sides parallel. Why do we get a parallelogram when we rotate any triangle around the midpoint of one of its sides?						



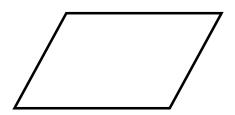
<u>A rectangle is a 4 sided shape with 4 right angles. Why do we get a rectangle when we rotate a right triangle around the midpoint of its hypotenuse?</u>


1


<u>A rhombus is a 4 sided shape with 4 equal sides. Why do we get a parallelogram if we rotate an isosceles triangle around the midpoint of its base?</u>

A square is a 4 sided shape with 4 equal sides and 4 right angles. Why do we get a square when we rotate an isosceles right triangle around the midpoint of its hypotenuse?

<u>A kite is a 4 sided shape with 2 pairs of adjacent sides that are congruent. Why do we get a kite when we reflect any triangle across its longest side?</u>


A **trapezoid** is a 4 sided shape with at least one pair of parallel opposite sides. Why can't the **trapezoid** at left be made by rotating or reflecting a triangle?

(2)

2

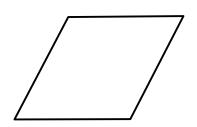
2) Quadrilateral Proofs

 \square (a) Use the definition of a parallelogram to prove that opposite sides are congruent.

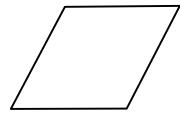
(b) Use the definition of a parallelogram and the information you proved in #4a to prove that the diagonals bisect each other.

(3) Quadrilateral Proofs

 \Box (a) Use the definition of a rectangle to prove that it is a parallelogram.

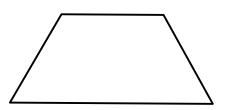


(b) Use the definition of a rectangle and anything you have proven so far to prove that the diagonals are congruent.



(4) Quadrilateral Proofs

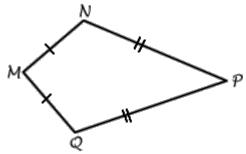
 \square (a) Use the definition of a rhombus to prove that it is a parallelogram.



 \square (b) Use the definition of a rhombus to prove that the diagonals are perpendicular.

(7) Quadrilateral Proofs

(a) Use the definition of isosceles trapezoid to prove that its base angles are congruent. (Use 2 altitudes to make a rectangle and 2 right triangles, show the triangles are congruent, use congruent parts.)


(b) Use the information from #7 to prove that the diagonals are congruent. (Use congruent parts and overlapping triangles.)

(6) Exit Ticket

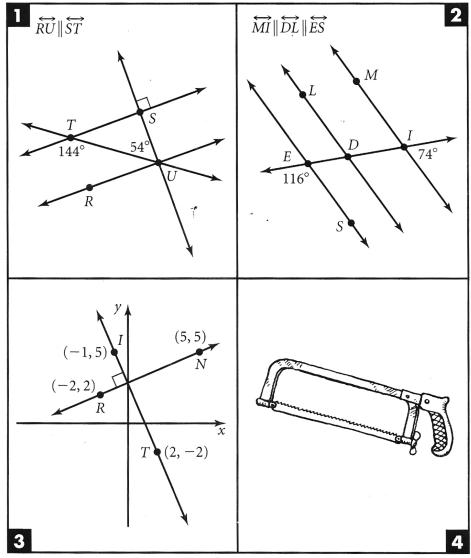
ON THE LAST PAGE

(7) Homework

 \Box (1)Use the definition of a kite (a quadrilateral with 2 pairs of consecutive = sides) to prove that diagonal \overline{MP} bisects $\angle NPQ$.

(2) First, draw it, then make a conclusion

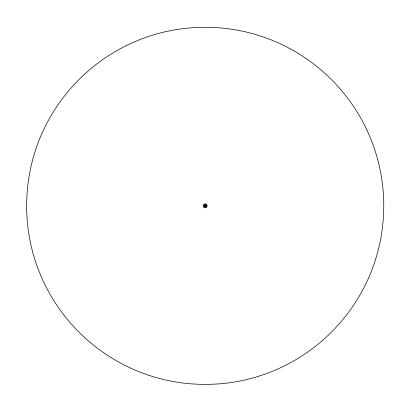
I know that	because	
\overline{MN} bisects $\angle AND$	It is given	


(7) cont.

Homework

 \square (3) First, draw it, then make a conclusion

I know that	because		
$\angle BOY$ and $\angle TOY$ are both 90°	It is given		


(4) Of the boxes 1, 2, 3, and 4, at least one of them is correct and at least one is incorrect. For the incorrect boxes, explain what is incorrect.

6 • What's Wrong with This Picture?

© 2003 Key Curriculum Press

(5) Construct equilateral triangle QRS inscribed in the circle below. (Hint: It might help to construct a regular hexagon first.

(6) In the diagram for problem number 7, label the center of the circle C and connect C to each vertex of the triangle.

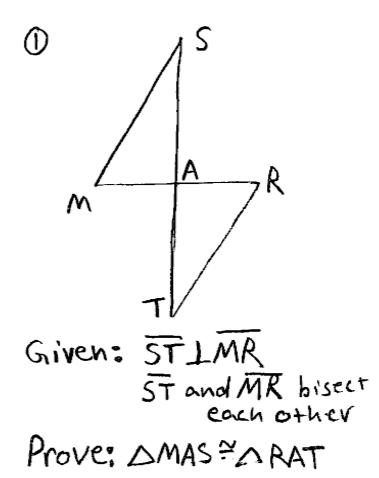
- (a) What kind of triangle is triangle QCR?_____
- (b) What is the measure of angle QCR? _____
- (c) What is the measure of angle CQR? _____

				9
Exit Ticket	Name	_ Date	_ Per	4.7R

(1) The LO (Learning Outcomes) are written below your name on the front of this packet. Demonstrate your achievement of these outcomes by doing the following:

No exit ticket. Proof Progress only

10 DO NOW Name


Date _____

Per

(1) PROOF PROGRESS D:

Write a proof for #1 or #2.

Attach this to the top of your "Proof Progress" packet with a paper clip.

